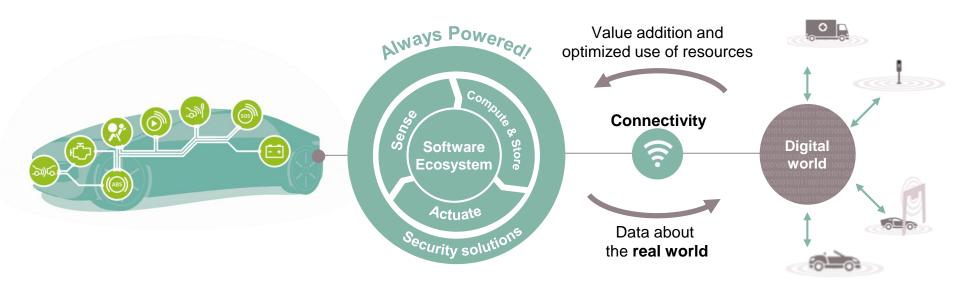


Dependable Solutions for Future Mobility and Zonal E/E Architectures



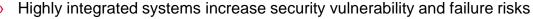
The future car is fully connected and always online. It requires artificial intelligence and a dependable system of electronics to drive autonomously

The future car links the real world with the digital world and ensures safer and more efficient roads

- > Artificial Intelligence is needed to enable the transformation towards a fully autonomous driving experience
- > This transformation requires enormous computational horsepower as well as...
- ...an interoperable dependable system of electronics including sensors, specialized processors, memory and network ICs, intelligent switches and power semiconductors

Challenges reach far beyond AI computing and include the high availability and the implementation of all required AD* functions

Control loop


Software

Challenges

Computational Challenges:

- Accuracy of probability-based Al
- Data capture and availability
- Complex edge cases and scenarios
- Advanced sensor technology

- > Reliable, real time communication
- Software complexity of multiple components and domains
- Power distribution systems which can diagnose issues, isolate failures and enable backup supplies very quickly

An autonomous system must ensure the availability of all safety-critical functions and allow at the same time the feasibility of a physical implementation of all functions

Autonomous driving functions require highly available systems which require dependable electronics

High Availability | Ensure high availability beyond critical operations; a safe and secure system, that operates in all conditions

Fail-Operational | Mitigate potentially hazardous effects by ensuring critical operations in the event of a failure

Fail-Safe | in the event of a failure, system enters safe state

Automation

Lower levels (ADAS, <L2)

Vehicle enters safe mode

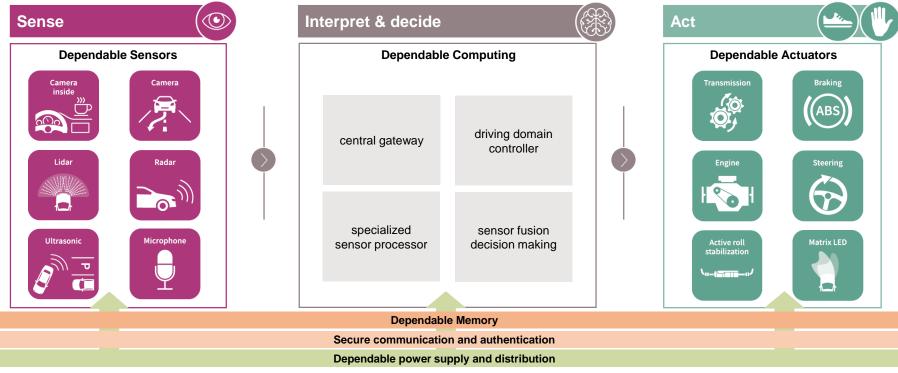
Reliable, robust, safe, secure

Higher levels (AD, =L3)

Vehicle continues safety critical tasks

Fail safe + available

Higher levels (AD, ≥L4+)


High availability in all conditions for extended time

Fail operational + highly available

High availability is required for and across all systems and functions of the vehicle

Dependable systems require **secure** systems, which always **sense**! always **compute**! always **act**! are always **connected**! are always **powered**!

In addition to high availability, the increasing number of functionalities drive the need for dependable electronics

High availability

Increasing functionalities

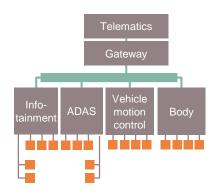
Dependable systems

- ...not only avoid and mitigate potentially hazardous effects (functional safety)
- ...but also enable safe & secure autonomous driving under all conditions (secure high availability)

A fully softwaredefined car Increasing wire harness

Increasing weight

More difficult manufacturability

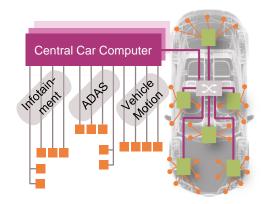

Dependable systems

- ... are also key to enable the implementation of more functionality required for automated driving
- ...and mitigate growing physical system challenges through enabling software and hardware scalability, more wire harness, weight, or manufacturability

In the future, zonal E/E architectures will enable the implementation of more functionalities in the car

Domain Architecture

Domains: ADAS, vehicle motion...


Benefits: ECUs which are optimized for their application, limited

complexity per ECU

Driver: Traditional application-centric

approach

Mixed Domain/Zone Architecture

Zones: Body, some Chassis/

Powertrain/ xEV

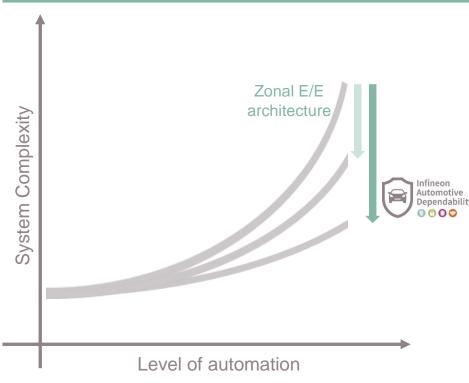
Benefits: wire harness reduction,

weight reduction

Driver: Increasing computational demand and the transition to a scalable car architecture

Zonal Architecture

Zones: Body, some Chassis/ Powertrain/ xEV + ADAS


Benefits: mixed architecture benefits + scalability through pooled computational resources

Driver: The software-defined car. Easier control over complete SW stack

Zone architecture reduces system complexity - dependable solutions enable needed system requirements resulting from zonal architectures

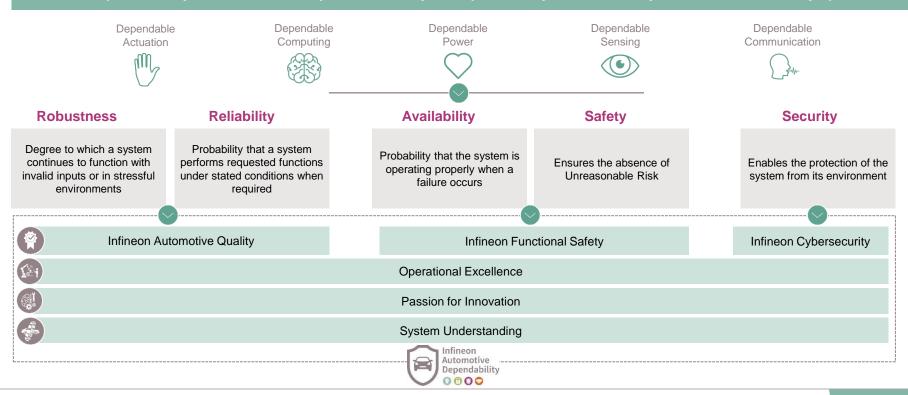
System complexity increases with the level of automation

System complexity drivers

- Trend towards autonomous driving
- Central computing and HW/ SW decoupling
- Increasing need for high availability and intelligent power distribution
- Increasing need for security (SOTA)

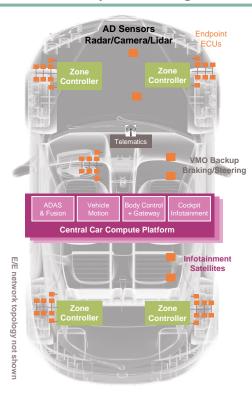
Zonal E/E architecture eases complexity

- SW and HW scalability
- Reduce overall wire harness length
- Weight and manufacturability issues


Dependable systems...

- ...enable the implementation of zonal architectures
- ... and further reduce complexity by safeguarding system security, safety and availability

We deliver dependable electronics enabling autonomous systems and their required E/E architectures


Secure dependable systems, which always sense, always compute, always act, are always connected, are always powered!

Autonomous systems push microcontrollers to be safe, secure and smart

Autonomous System Design

Autonomous System Description

- The goal is ensure secure sensor data is used to determine create a safe, humanlike driving experience
- Radars, cameras, ultra-sonic sensors, Time-of-Flight (ToF), microphones and LIDAR's data are aggregated in zone or central compute platform
- Decision making located in vehicle computer and distributed to vehicle motion control systems

System Objectives

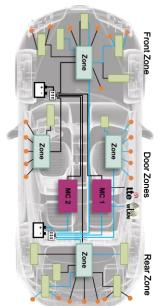
- Scalability and upgradeable with common wiring
- Software flexibility
- Both high speed and real time communication
- ASIL-D
- Security architecture to address increased vulnerability

Dependable Solution

Required key features of microcontrollers

Real Time Performance and versatility

Safety and Security Beyond the Standards


Freedom of interference Safety Architecture Dedicated Accelerators for AI, Connectivity, and Signal Processing

Fail operational power net architectures become decentralized and require semiconductor based Intelligent Power Devices

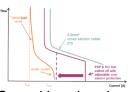
Decentralized power distribution

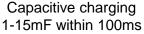

Zone E/E Architecture

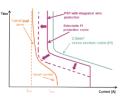
The goal is to attain reduced wire complexity and high availability – Always Powered!

PD functional architecture

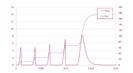
Always powered fail-operational approach with independent power distribution systems


Dependable semiconductor based safety elements required to ensure the system availability and guarantee the freedom from interference

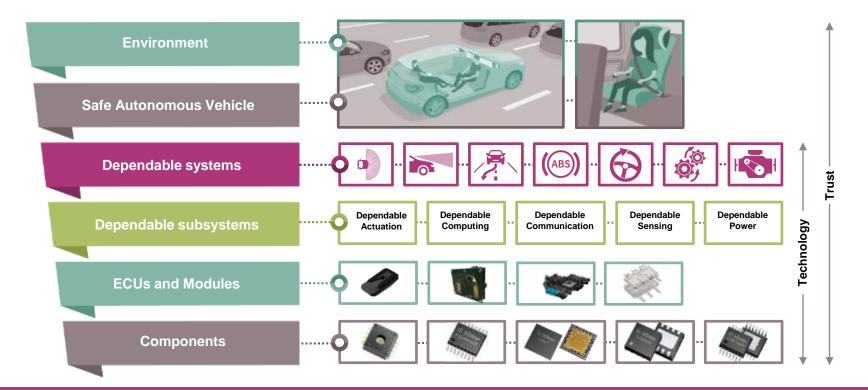

Dependable Solution


Required key features of safety elements

Fast Failure Isolation < 100µs


Wire Protection I2t

Low Power ON < 50 µA



Development according functional safety ISO 26262 ensuring the failure mode coverage

System understanding is critical to enable these highly available systems and architectures

Infineon leverages a deeply embedded system thinking

Think Automotive Dependability. Think Infineon.

The future car is fully connected and always online and requires artificial intelligence to drive autonomously

Major challenges are changes in the E/E Architecture and the high availability to enable autonomous driving

 Dependable and innovative electronics and systems will mitigate complexities and enable future mobility and autonomous driving

Infineon is a the dependable partner and supplier of dependable electronics

We deliver dependable electronics which enable systems that are the foundation for trust.

Part of your life. Part of tomorrow.